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On the PDS of GRB light curves
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Abstract. In spite of the complicated behavior in the time domain, long GRBs show a simpler
behavior in the Fourier domain of frequencies, represented by power density spectra, PDS.
Recently, there are some relations found between GRBs properties and PDS parameters, mod-
eled by power-laws. Among them, the correlation between peak energy Epeak and PDS slope α
shows a clear evidence. In this work we try to understand the origin of this correlation, making
use of synthetic pulses. We find some preliminary evidences that Epeak −α relation can be seen
as a new confirmation of the empiric relations Epeak − L and tp − L for GRBs.
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1. Introduction

The light curves of GRBs typically have many
random peaks, diverse structures which ap-
pear to be the result of a complex distribu-
tion of several pulses. Burst pulses are com-
monly described by a fast rise exponential-
decay (FRED) shape, although the decay is not
strictly exponential (Norris et al. 2005):
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or power-law shape (Kocevski et al. 2003):
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Analysis has shown broad log-normal dis-
tribution in time duration, not only among dif-
ferent bursts, but also within a single burst. In
spite of extensive studies, this temporal behav-
ior is not still understood. Light curve analysis
can be a powerful tool to shed light on the still
obscure physics and geometry of the prompt

emission of GRBs. It can provide insights into
the size, the distance of the dissipation region
and the radiation processes.

In spite of the complicated behavior in the
time domain, long GRBs show a simpler be-
havior in the Fourier domain of frequencies
c(t)→ C( f ) =

∫ ∞
−∞ c(t)e2πi f tdt.

The power density spectrum PDS is de-
fined as P f = C f C∗f .

In the case of observed curves with N
discrete data cm (time sequence), the discrete
Fourier transform DFT is estimated by:

Ck =
∑N−1

m=0 cme2πimn/N , P( fk) = |Ck |2.

2. Computing PDS

One frequently used way of estimating PDS is
the periodogram, given by

P( fk) = 1
N2 [|Ck |2 + |CN−k |2], k = 1, 2, ..., N

2 .
P( fk) is considered as the average of P( f )

over a narrow window function, centered on
fk. This window function would naturally be
W( f ) = 1

N2 [ sin π f
sin π f /N ], the Fourier transform of
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the rectangular function. This window function
is not zero outside the corresponding frequency
interval, so the periodogram estimate is influ-
enced from other frequencies outside the inter-
val, technically speaking leaks from one fre-
quency to another. The correction of the leak-
age is called data windowing. Instead of the
rectangular function, one chooses a window
function that changes more gradually from
zero to its maximum and then back to zero.
In our calculations, we use Bartlett function,
but there are several different ones (Press et al.
1992).

Another question of the periodogram is the
value of the standard deviation σ, which is
100% of the estimate, independent on the num-
ber of data N. There are several techniques for
reducing the standard deviation. The technique
we make use is to partition the original N data
(N = 2MK) in 2M segments, each of K points.
We choose a sequence of 2M points, one point
from each segment and repeat the procedure K
times, for K consecutive sampled points. Each
sequence is separately Fourier transformed to
produce a periodogram estimate (Press et al.
1992). Finally, the K periodogram estimates

are averaged at each frequency. This final av-
eraging reduces the standard deviation of the
estimate by

√
K.

There are other ways used for reducing the
deviation of a single PDS, one of them by using
Monte-Carlo simulations of synthetic GRBs
around a real one (Ukwatta et al. 2011).

3. Average and individual PDS

3.1. Average PDS

The procedure of averaging consists in sum-
ming up the PDS of individual bursts after
some normalization and dividing the result by
the number of bursts in the sample. The dis-
tribution of the individual P f around < P f >
follows a standard exponential law, so the am-
plitude of fluctuations in < P f > is given by:
<∆P f>

<P f>
∼ N−1/2, N the number of bursts in the

sample (Beloborodov et al. 2000).
There are different ways of normalization:

– the light curves are normalized to their
peak (Beloborodov et al. 2000);

– the averaging is performed inside a sole
group of variability, taking into account
also a kind of pseudoredshift, obtained
through empirical relations (Lazzati,
2002);

– the averaging is performed inside sub-
classes of GRBs found based on the auto-
correlation function and considering the
measured redshift (Borgonovo et al. 2007).

The procedure of averaging follows the
conviction that different GRBs are many real-
izations of a unique stochastic process, giving
rise to the variety of the observed profiles.

The average PDS are modeled by a power
law (Beloborodov et al. 2000) or smoothly
broken power-law (Guidorzi et al. 2012),
extending over two frequency decades, from
about 10−2 to 1 or 2 Hz. The power law index
lies in the range 1.5 − 2 and the break around
1 − 2 Hz.

3.2. Individual PDS

While the average PDS over a large number of
GRBs exhibits small fluctuations and is easier
to characterize, it provides no clues on the va-
riety of properties of individual GRBs. On the
other hand, the wide variety of light curves ex-
hibited by GRBs would potentially be indica-
tive of different emission and scattering pro-
cesses.

The key point of studying individual versus
averaged PDS is that one can investigate the
possible connection between PDS and GRBs
key properties of prompt emission, such as
peak energy or the isotropic-equivalent radi-
ated energy (Dichiara et al. 2016).

As mentioned above, one way of estimat-
ing individual PDS is by simulating N light
curves around the real one, by using Monte
Carlo technique. The standard deviation of
simulated PDS is found and the individual PDS
is calculated inside this uncertainty (Ukwatta
et al. 2011). This procedure follows as well
the idea of a unique stochastic process inside
a GRB.



Boçi, Hafizi: On the PDS of GRB light curves 291

Otherwise, there are authors who calculate
only a single PDS over the entire observation
duration (Dichiara et al. 2016), (Guidorzi et
al. 2016). Each GRB time profile is consid-
ered individually as the unique sample of a
unique stochastic process, which is different
from other GRBs. PDS and uncertainties at
each frequency are calculated assuming Leahy
normalization.

To fit an individual PDS, two models are
used:

– the simpler one is a mere power-law plus
the white-noise constant, S PL( f ) = A f −α +
B, A the normalization constant, α the
power law index and B the white noise
level;

– bent power law model, S PL( f ) = A[1 +

( f
fb

)α]−1 + B.

The power-law index lies in the range 1.5−
4, with some exceptions to 6.

4. Some relations

There are some relations found between PDS
parameters and GRBs properties. The first
group of relations concerns the variability of
GRBs and the second one the GRBs energy.

In the first group we could mention a corre-
lation found between the dominant frequency
and the variability measure and another cor-
relation between the break frequency and the
variability measure (Lazzati, 2002). The num-
ber of pulses also seems to anti-correlate with
the slope α.

Ukwatta et al. (2011) found that the red-
shift corrected threshold frequency is posi-
tively correlated with the isotropic peak lumi-
nosity.

An interesting correlation is found between
peak energy and the PDS power law index α of
individual GRBs, Epeak − α relation (Dichiara
et al. 2016).

5. A synthetic Epeak − α relation

We try to reproduce the above mentioned
Epeak − α relation by generating synthetic
pulses with different luminosity and by com-
bining some empiric relations for GRBs:

– luminosity - duration relation (Hakkila et
al. 2008):
L = 3.4 × 1052t−0.85

p ,
with tp the pulse duration between the two
Ae−3 intensity points, where A is the inten-
sity at the maximum of the pulse.

– peak energy-luminosity Epeak − L relation
(Ghirlanda et al. 2005):
Epeak = 380( L

1.6×1052 )0.43

– a correlation between the rise time
and pulse width measured by FWHM
(Kocevski et al. 2003):
tm = 0.323tp(1 + z)0.6,
where tm is the pulse rise time and tpobs =

tp(1+z)0.6 is the duration of the pulse to the
observer.

Assuming z=1 and normalized Band spec-
trum, we calculate pulse peak photon flux to
the observer as (Boçi et al. 2010):

P = L
4πD2

LΦ0Eobs
peak

∫ EB
Eobs

peak
EA

Eobs
peak

B(x)dx

Bursts pulses are described by equation 2,
with r = 1.49 and d = 2.39.
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Fig. 1. Epeak − α diagram for the synthetic pulses
with different luminosity. The slope α for each cor-
responding PDS is estimated by a power-law model,
whereas Epeak is found based on Ghirlanda Epeak −L
empiric relation.
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We calculate the PDS for each pulse and
find the slope in logarithmic scale for the inter-
val of frequencies between (0.3 − 1) Hz.

The results are plotted in Fig.1.

6. Conclusions

Although the considered sample is small, it
seems that pulses with larger peak energy Epeak
exhibit lower power-law index α, a trend sim-
ilar to that found by (Dichiara et al. 2016).
This result is only a preliminary one. We are
performing a more systematic work by pro-
ducing a larger sample of GRB’s pulses. We
believe that the confirmation of the Epeak − α
correlation, making use of the synthetic pulses,
can be seen as another evidence for empiric
Epeak−L and tp−L relations, thought to be im-
portant characteristics for using GRBs as tools
in Cosmology, for scrutinizing the dark ages
of the Universe, which is one of the important
goals for the THESEUS mission (Amati et al.
2018). THESEUS will be very helpful to en-
large the sample of GRB ligtcurves for improv-
ing the correlations mentioned in this work.
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